Chemogenetics Modulation of Electroacupuncture Analgesia in Mice Spared Nerve Injury-Induced Neuropathic Pain through TRPV1 Signaling Pathway.
I-Han HsiaoChia-Ming YenHsin-Cheng HsuHsien-Yin LiaoYi-Wen LinPublished in: International journal of molecular sciences (2024)
Neuropathic pain, which is initiated by a malfunction of the somatosensory cortex system, elicits inflammation and simultaneously activates glial cells that initiate neuroinflammation. Electroacupuncture (EA) has been shown to have therapeutic effects for neuropathic pain, although with uncertain mechanisms. We suggest that EA can reliably cure neuropathic disease through anti-inflammation and transient receptor potential V1 (TRPV1) signaling pathways from the peripheral to the central nervous system. To explore this, we used EA to treat the mice spared nerve injury (SNI) model and explore the underlying molecular mechanisms through novel chemogenetics techniques. Both mechanical and thermal pain were found in SNI mice at four weeks (mechanical: 3.23 ± 0.29 g; thermal: 4.9 ± 0.14 s). Mechanical hyperalgesia was partially attenuated by 2 Hz EA (mechanical: 4.05 ± 0.19 g), and thermal hyperalgesia was fully reduced (thermal: 6.22 ± 0.26 s) but not with sham EA (mechanical: 3.13 ± 0.23 g; thermal: 4.58 ± 0.37 s), suggesting EA's specificity. In addition, animals with Trpv1 deletion showed partial mechanical hyperalgesia and no significant induction of thermal hyperalgesia in neuropathic pain mice (mechanical: 4.43 ± 0.26 g; thermal: 6.24 ± 0.09 s). Moreover, we found increased levels of inflammatory factors such as interleukin-1 beta (IL1-β), IL-3, IL-6, IL-12, IL-17, tumor necrosis factor alpha, and interferon gamma after SNI modeling, which decreased in the EA and Trpv1 -/- groups rather than the sham group. Western blot and immunofluorescence analysis showed similar tendencies in the dorsal root ganglion, spinal cord dorsal horn, somatosensory cortex (SSC), and anterior cingulate cortex (ACC). In addition, a novel chemogenetics method was used to precisely inhibit SSC to ACC activity, which showed an analgesic effect through the TRPV1 pathway. In summary, our findings indicate a novel mechanism underlying neuropathic pain as a beneficial target for neuropathic pain.
Keyphrases
- neuropathic pain
- spinal cord
- spinal cord injury
- signaling pathway
- high fat diet induced
- oxidative stress
- functional connectivity
- induced apoptosis
- rheumatoid arthritis
- lipopolysaccharide induced
- risk assessment
- metabolic syndrome
- ultrasound guided
- chronic pain
- transcranial direct current stimulation
- climate change
- cognitive impairment
- peripheral nerve
- cerebral ischemia
- adipose tissue
- anti inflammatory
- lps induced
- cell death
- optical coherence tomography