First-order ultrasensitivity in phosphorylation cycles.
Michael A KochenJoseph L HellersteinHerbert M SauroPublished in: Interface focus (2024)
Cellular signal transduction takes place through a network of phosphorylation cycles. These pathways take the form of a multi-layered cascade of cycles. This work focuses on the sensitivity of single, double and n length cycles. Cycles that operate in the zero-order regime can become sensitive to changes in signal, resulting in zero-order ultrasensitivity (ZOU). Using frequency analysis, we confirm previous efforts that cascades can act as noise filters by computing the bandwidth. We show that n length cycles display what we term first-order ultrasensitivity which occurs even when the cycles are not operating in the zero-order regime. The magnitude of the sensitivity, however, has an upper bound equal to the number of cycles. It is known that ZOU can be significantly reduced in the presence of retroactivity. We show that the first-order ultrasensitivity is immune to retroactivity and that the ZOU and first-order ultrasensitivity can be blended to create systems with constant sensitivity over a wider range of signal. We show that the ZOU in a double cycle is only modestly higher compared with a single cycle. We therefore speculate that the double cycle has evolved to enable amplification even in the face of retroactivity.