Login / Signup

Towards High-Performance Aqueous Sodium-Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na2 VTi(PO4 )3 using Concentrated Electrolytes.

Huang ZhangSangsik JeongBingsheng QinDiogo Vieira CarvalhoDaniel BuchholzStefano Passerini
Published in: ChemSusChem (2018)
Aqueous Na-ion batteries may offer a solution to the cost and safety issues of high-energy batteries. However, substantial challenges remain in the development of electrode materials and electrolytes enabling high performance and long cycle life. Herein, we report the characterization of a symmetric Na-ion battery with a NASICON-type Na2 VTi(PO4 )3 electrode material in conventional aqueous and "water-in-salt" electrolytes. Extremely stable cycling performance for 1000 cycles at a high rate (20 C) is found with the highly concentrated aqueous electrolytes owing to the formation of a resistive but protective interphase between the electrode and electrolyte. These results provide important insight for the development of aqueous Na-ion batteries with stable long-term cycling performance for large-scale energy storage.
Keyphrases
  • ion batteries
  • ionic liquid
  • solid state
  • carbon nanotubes
  • high intensity