Corrosion Mitigation Performance of N80 Steel in 5% Sulfamic Acid Medium by Applying Novel Tetrahydro-1,2,4-triazines Including Triazene Moieties: Electrochemical and Theoretical Approaches.
Hany M Abd El-LateefKamal ShalabiAnas M ArabYasser M AbdallahPublished in: ACS omega (2022)
We observed our newly developed tetrahydro-1,2,4-triazines, including triazene moieties ( THTA ), namely, 6-((1E)-1-((2E)-(4-(((Z)-1-(2,4-diphenyl-2,3,4,5-tetrahydro-1,2,4-triazin-5-yl) ethylidene) triaz-1-en-1-yl)piperazin-1-yl) triaz-2-en-1-ylidene) ethyl)-2,4-diphenyl-2,3,4,5-tetrahydro-1,2,4-triazine ( THTA-I ), and 1-((E)-((E)-1-(2,4-diphenyl-2,3,4,5-tetrahydro-1,2,4-triazin-6-yl) ethylidene) triaz-1-en-1-yl) naphthalen-2-ol ( THTA-II ), as effective inhibitors for the corrosion protection of N80 carbon steel metal in 5% sulfamic acid as the corrosive medium via electrochemical approaches such as potentiodynamic polarization and electrochemical impedance spectroscopy. Furthermore, the tested steel exterior was monitored using X-ray photoelectron spectroscopy after the treatment with the investigated components to verify the establishment of the adsorbed shielding film. The investigated compounds acted as mixed-type inhibitors, as shown by Tafel diagrams. The compounds considered obey the Langmuir adsorption isotherm, and their adsorption on the steel surface was chemisorption. When the tested inhibitors were added, the double-layer capacitances, which can be determined by the adsorption of the tested inhibitors on N80 steel specimens, decreased compared with that of the blank solution. At 10 -4 M, the inhibitory efficacy of THTA-I and THTA-II achieved maximum values of 88.5 and 86.5%, respectively. Density-functional theory computations and Monte-Carlo simulation were applied to determine the adsorption attributes and inhibition mechanism through the studied components. Furthermore, the investigated inhibitors were considered to adsorb on the Fe (1 1 0) surface. The adsorption energy was then measured on steel specimens.
Keyphrases
- aqueous solution
- density functional theory
- gold nanoparticles
- high resolution
- ionic liquid
- atomic force microscopy
- molecularly imprinted
- single molecule
- solid state
- monte carlo
- mass spectrometry
- magnetic resonance imaging
- label free
- computed tomography
- room temperature
- fine needle aspiration
- high speed
- metal organic framework
- virtual reality