Login / Signup

Fabrication of Drug-Loaded Torus-Shaped Alginate Microparticles and Kinetic Analysis of Their Drug Release.

Kazuki MatsumiyaNatsuko F InagakiTaichi Ito
Published in: Langmuir : the ACS journal of surfaces and colloids (2023)
We fabricated drug-loaded, microsized, and torus-shaped alginate microparticles (TSMs) by vortex-ring freezing (VRF), utilizing vortex ring formation and ionic cross-linking. The equivalent outer diameter of the TSMs was ca. 200 μm. Several model drugs, such as doxorubicin, heparin, lysozyme, and several dextran derivatives, have been successfully loaded into TSMs. Because the TSMs were fragile due to the limitation of the process conditions of the VRF, drug-loaded TSMs were subsequently cross-linked via "post-cross-linking" with CaCl 2 , SrCl 2 , or BaCl 2 to increase the cross-linking density of the alginate matrix, thereby enhancing the stability of dextran (Dex)-loaded TSMs (Dex-TSMs) and enabling the sustained release of natural Dex of 10, 70, or 150 kDa and cationic or anionic Dex at a physiological pH. The release kinetics of Dexs showed molecular weight and charge dependence; a relatively dense network of the alginate matrix of post-cross-linked TSMs resulted in the sustained release of Dexs with high molecular weights, heparin, and lysozyme for up to 7 days in the release test. Furthermore, the solute diffusivities of the dextran derivatives in the bulk alginate matrix were measured by using fluorescence correlation spectroscopy, which supported the release kinetics of TSMs. Drug-loaded TSMs have potential as drug carriers for biopharmaceuticals, such as proteins.
Keyphrases