Login / Signup

Floral thermal biology in relation to pollen thermal performance in an early spring flowering plant.

T N ShererJ M HeilingMatthew H Koski
Published in: Plant biology (Stuttgart, Germany) (2024)
The floral microenvironment impacts gametophyte viability and plant-pollinator interactions. Plants employ mechanisms to modify floral temperature, including thermogenesis, absorption of solar radiation, and evaporative cooling. Whether floral thermoregulation impacts reproductive fitness, and how floral morphological variation mediates thermoregulatory capacity are poorly understood. We measured temperature of the floral microenvironment in the field and tested for thermogenesis in the lab in early spring flowering Hexastylis arifolia (Aristolochiaceae). We evaluated whether thermoregulatory capacity was associated with floral morphological variation. Finally, we experimentally determined the thermal optimum and tolerance of pollen to assess whether thermoregulation may ameliorate thermal stress to pollen. Pollen germination was optimal near 21 °C, with a 50% tolerance breadth of ~18 °C. In laboratory conditions, flowers exhibited thermogenesis of 1.5-4.8 °C for short intervals within a conserved timeframe (08:00-09:00 h). In the field, temperature inside the floral tube often deviated from ambient - floral interiors were up to 4 °C above ambient when it was cold, but some fell nearly 10 °C below ambient during peak heat. Flowers with smaller openings were cooler and more thermally stable than those with larger openings during peak heat. Thermoregulation maintained a floral microenvironment within the thermal tolerance breadth of pollen. Results suggest that H. arifolia flowers have a stronger capacity to cool than to warm, and that narrower floral openings create a distinct floral microenvironment, enhancing floral cooling effects. While deviation of floral temperature from ambient conditions maintains a suitable environment for pollen and suggests an adaptive role of thermoregulation, we discuss adaptive and nonadaptive mechanisms underlying floral warming and cooling.
Keyphrases
  • air pollution
  • stem cells
  • adipose tissue
  • particulate matter
  • radiation therapy
  • body composition
  • heat stress
  • transcription factor