Pneumatic Structural Deformation to Enhance Resonance Behavior for Broadband and Adaptive Radar Stealth.
Leilei LiangChen LiXiuyue YangZiming ChenBaoshan ZhangYi YangGuangbin JiPublished in: Nano letters (2024)
Ideal radar absorbing materials (RAMs) require instantaneous, programmable, and spontaneous adaptability to cope with a complex electromagnetic (EM) environment across the full working frequency. Despite various material systems and adaptive mechanisms having been demonstrated, it remains a formidable challenge to integrate these benefits simultaneously. Here, we present a pneumatic matrix that couples morphable MXene/elastomer conductors with dielectric spacers, which leverages controllable airflow to reconfigure the spatial structure between a flat sheet and a hemispherical crown while maintaining resistance stability via wrinkle folding and unfolding. The interdimensional reconfigurations drastically induce multiple resonance behavior, enabling the matrix remarkable frequency tunability (144.5%), ultrawide bandwidth (15 GHz), weak angular dependence (45° incidence), ultrafast responsiveness (∼30 ms), and excellent reproducibility (1000 cycles). With multichannel fluidic and conceptual automated control systems, the final pneumatic device demonstrates a multiplexed, programmable, and autonomous transformable mode that builds a promising platform for smart radar cloaking.