Fast simulations of multidimensional NMR spectra of proteins and peptides.
Thomas VosegaardPublished in: Magnetic resonance in chemistry : MRC (2017)
To simulate full multidimensional nuclear magnetic resonance spectra of peptides and proteins in a reasonable time frame, a strategy for separating the time-consuming full-density matrix calculations from the chemical shift prediction and calculation of coupling patterns is presented. The simulation setup uses SIMulation Program for SOlid-state NMR (SIMPSON) to calculate total correlation spectroscopy transfer amplitudes and average distances as a source for nuclear Overhauser effect spectroscopy transfer amplitudes. Simulated 1 H 1D, 2D total correlation spectroscopy, and 2D nuclear Overhauser effect spectroscopy nuclear magnetic resonance spectra of peptides with sequence Pro─Ala─Gly─Tyr─Asn and Asn─Phe─Gly─Ala─Ile─Leu and of ubiquitin are presented. In all cases, the simulations lasted from a few seconds to tens of seconds on a normal laptop computer.