Efficient Polymer Solar Cells with High Open-Circuit Voltage Containing Diketopyrrolopyrrole-Based Non-Fullerene Acceptor Core End-Capped with Rhodanine Units.
María PrivadoVirginia CuestaPilar de la CruzMukhamed L KeshtovRahul SinghalGanesh D SharmadFernando LangaPublished in: ACS applied materials & interfaces (2017)
Herein we report the synthesis of a novel A-D-A-D-A non-fullerene small-molecule acceptor (NFSMA) bearing a diketopyrrolopyrrole (DPP) acceptor central core coupled to terminal rhodanine acceptors via a thiophene donor linker (denoted as MPU1) for use in non-fullerene polymer solar cells (PSCs). This NFSMA exhibits a narrow optical band gap (1.48 eV), strong absorption in the 600-800 nm wavelength region of the solar spectrum, and a lowest unoccupied energy level of -3.99 eV. When the mixture of a medium band gap D-A copolymer P (1.75 eV) was used as donor and MPU1 as acceptor, the blend film showed a broad absorption profile from 400 to 850 nm, beneficial for light harvesting efficiency of the resulted polymer solar cell. After optimization of the donor-to-acceptor weight ratios and concentration of solvent additive, the P-MPU1-based PSC exhibited a power conversion efficiency of 7.52% (Jsc= 12.37 mA/cm2, Voc = 0.98 V, and fill factor = 0.62), which is much higher than that for a P3HT-MPU1-based device (2.16%) prepared under identical conditions. The higher value for the P-MPU1-based device relative to the P3HT-MPU1-based one is related to the low energy loss and more balanced charge transport in the device based on the P donor. These results indicate that alteration of the absorption spectra and electrochemical energy levels of non-fullerene acceptors, and appropriate selection of the polymer donor with complementary absorption profile, is a promising means to further boost the performance of PSCs.