Login / Signup

Embryonic Exposure to Organophosphate Flame Retardants (OPFRs) Differentially Induces Cardiotoxicity in Rare Minnow ( Gobiocypris rarus ).

Xiangsheng HongLilai YuanXu ZhaoYuan ShanTianlong QinJiasu LiJinmiao Zha
Published in: Environmental science & technology (2024)
Organophosphorus flame retardants (OPFRs) such as triphenyl phosphate (TPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were reported to impair cardiac function in fish. However, limited information is available regarding their cardiotoxic mechanisms. Using rare minnow ( Gobiocypris rarus ) as a model, we found that both TPHP and TDCIPP exposures decreased heart rate at 96 h postfertilization (hpf) in embryos. Atropine (an mAChR antagonist) can significantly attenuate the bradycardia caused by TPHP, but only marginally attenuated in TDCIPP treatment, suggesting that TDCIPP-induced bradycardia is independent of mAChR. Unlike TDCIPP, although TPHP-induced bradycardia could be reversed by transferring larvae to a clean medium, the inhibitory effect of AChE activity persisted compared to 96 hpf, indicating the existence of other bradycardia regulatory mechanisms. Transcriptome profiling revealed cardiotoxicity-related pathways in treatments at 24 and 72 hpf in embryos/larvae. Similar transcriptional alterations were also confirmed in the hearts of adult fish. Further studies verified that TPHP and TDCIPP can interfere with Na + /Ca 2+ transport and lead to disorders of cardiac excitation-contraction coupling in larvae. Our findings provide useful clues for unveiling the differential cardiotoxic mechanisms of OPFRs and identifying abnormal Na + /Ca 2+ transport as one of a select few known factors sufficient to impair fish cardiac function.
Keyphrases