Graphene Multiplexed Sensor for Point-of-Need Viral Wastewater-Based Epidemiology.
Michael GeiwitzOwen Rivers PageTio MarelloMarina E NicholsNarendra KumarStephen HummelVsevolod BelosevichQiong MaTim van OpijnenBruce BattenMichelle M MeyerKenneth Stephen BurchPublished in: ACS applied bio materials (2024)
Wastewater-based epidemiology (WBE) can help mitigate the spread of respiratory infections through the early detection of viruses, pathogens, and other biomarkers in human waste. The need for sample collection, shipping, and testing facilities drives up the cost of WBE and hinders its use for rapid detection and isolation in environments with small populations and in low-resource settings. Given the ubiquitousness and regular outbreaks of respiratory syncytial virus, SARS-CoV-2, and various influenza strains, there is a rising need for a low-cost and easy-to-use biosensing platform to detect these viruses locally before outbreaks can occur and monitor their progression. To this end, we have developed an easy-to-use, cost-effective, multiplexed platform able to detect viral loads in wastewater with several orders of magnitude lower limit of detection than that of mass spectrometry. This is enabled by wafer-scale production and aptamers preattached with linker molecules, producing 44 chips at once. Each chip can simultaneously detect four target analytes using 20 transistors segregated into four sets of five for each analyte to allow for immediate statistical analysis. We show our platform's ability to rapidly detect three virus proteins (SARS-CoV-2, RSV, and Influenza A) and a population normalization molecule (caffeine) in wastewater. Going forward, turning these devices into hand-held systems would enable wastewater epidemiology in low-resource settings and be instrumental for rapid, local outbreak prevention.
Keyphrases
- sars cov
- wastewater treatment
- respiratory syncytial virus
- loop mediated isothermal amplification
- anaerobic digestion
- high throughput
- low cost
- mass spectrometry
- respiratory syndrome coronavirus
- risk factors
- endothelial cells
- label free
- escherichia coli
- sewage sludge
- liquid chromatography
- real time pcr
- circulating tumor cells
- coronavirus disease
- high performance liquid chromatography
- municipal solid waste
- room temperature
- ms ms
- simultaneous determination