Identification of Vertebral Fractures by Convolutional Neural Networks to Predict Nonvertebral and Hip Fractures: A Registry-based Cohort Study of Dual X-ray Absorptiometry.
Sheldon DerkatchChristopher KirbyDouglas KimelmanMohammad Jafari JozaniJ Michael DavidsonWilliam D LesliePublished in: Radiology (2019)
Background Detection of vertebral fractures (VFs) aids in management of osteoporosis and targeting of fracture prevention therapies. Purpose To determine whether convolutional neural networks (CNNs) can be trained to identify VFs at VF assessment (VFA) performed with dual-energy x-ray absorptiometry and if VFs identified by CNNs confer a similar prognosis compared with the expert reader reference standard. Materials and Methods In this retrospective study, 12 742 routine clinical VFA images obtained from February 2010 to December 2017 and reported as VF present or absent were used for CNN training and testing. All reporting physicians were diagnostic imaging specialists with at least 10 years of experience. Randomly selected training and validation sets were used to produce a CNN ensemble that calculates VF probability. A test set (30%; 3822 images) was used to assess CNN agreement with the human expert reader reference standard and CNN prediction of incident non-VFs. Statistical analyses included area under the receiver operating characteristic curve, two-tailed Student t tests, prevalence- and bias-adjusted κ value, Kaplan-Meier curves, and Cox proportional hazard models. Results This study included 12 742 patients (mean age, 76 years ± 7; 12 013 women). The CNN ensemble demonstrated an area under the receiver operating characteristic curve of 0.94 (95% confidence interval [CI]: 0.93, 0.95) for VF detection that corresponded to sensitivity of 87.4% (534 of 611), specificity of 88.4% (2838 of 3211), and prevalence- and bias-adjusted κ value of 0.77. On the basis of incident fracture data available for 2813 patients (mean follow up, 3.7 years), hazard ratios adjusted for baseline fracture probability were 1.7 (95% CI: 1.3, 2.2) for CNN versus 1.8 (95% CI: 1.3, 2.3) for expert reader-detected VFs for incident non-VF and 2.3 (95% CI: 1.5, 3.5) versus 2.4 (95% CI: 1.5, 3.7) for incident hip fracture. Conclusion Convolutional neural networks can identify vertebral fractures on vertebral fracture assessment images with high accuracy, and these convolutional neural network-identified vertebral fractures predict clinical fracture outcomes. © RSNA, 2019 Online supplemental material is available for this article.
Keyphrases
- convolutional neural network
- dual energy
- bone mineral density
- deep learning
- hip fracture
- end stage renal disease
- cardiovascular disease
- computed tomography
- postmenopausal women
- ejection fraction
- high resolution
- newly diagnosed
- chronic kidney disease
- body composition
- risk factors
- peritoneal dialysis
- clinical practice
- primary care
- image quality
- emergency department
- endothelial cells
- prognostic factors
- type diabetes
- artificial intelligence
- healthcare
- magnetic resonance imaging
- pregnant women
- magnetic resonance
- polycystic ovary syndrome
- skeletal muscle
- drug delivery
- adverse drug
- quantum dots
- label free