Login / Signup

No postcopulatory selection against MHC-homozygous offspring: Evidence from a pedigreed captive rhesus macaque colony.

Elisabeth H M SterckR E BontropN de GrootA J M de Vos-RouwelerG G M Doxiadis
Published in: Molecular ecology (2017)
The heterozygosity status of polymorphic elements of the immune system, such as the major histocompatibility complex (MHC), is known to increase the potential to cope with a wider variety of pathogens. Pre- and postcopulatory processes may regulate MHC heterozygosity. In a population where mating occurs among individuals that share identical MHC haplotypes, postcopulatory selection may disfavour homozygous offspring or ones with two MHC haplotypes identical to its mother. We tested these ideas by determining the incidence of MHC-heterozygous and MHC-homozygous individuals in a pedigreed, partially consanguineous captive rhesus monkey colony. Bayesian statistics showed that when parents share MHC haplotypes, the distribution of MHC-heterozygous and MHC-homozygous individuals significantly fitted the expected Mendelian distribution, both for the complete MHC haplotypes, and for MHC class I or II genes separately. Altogether, we found in this captive colony no evidence for postcopulatory selection against MHC-homozygous individuals. However, the distribution of paternally and maternally inherited MHC haplotypes tended to differ significantly from expected. Individuals with two MHC haplotypes identical to their mother were underrepresented and offspring with MHC haplotypes identical to their father tended to be overrepresented. This suggests that postcopulatory processes affect MHC haplotype combination in offspring, but do not prevent low MHC heterozygosity.
Keyphrases
  • high fat diet
  • metabolic syndrome
  • risk assessment
  • adipose tissue
  • dna methylation
  • transcription factor
  • multidrug resistant
  • genome wide identification