Edaravone mitigates hemorrhagic cystitis by modulating Nrf2, TLR-4/NF-κB, and JAK1/STAT3 signaling in cyclophosphamide-intoxicated rats.
Emad H M HassaneinMarwa A AhmedAhmed M SayedEman K RashwanOmnia A M Abd El-GhafarAyman Moawad MahmoudPublished in: Journal of biochemical and molecular toxicology (2021)
Hemorrhagic cystitis is a potentially deadly complication associated with radiation therapy and chemotherapy. This study explored the protective effect of edaravone (ED) on cyclophosphamide (CP)-induced hemorrhagic cystitis, oxidative stress, and inflammation in rats. The animals received 20 mg/kg ED for 10 days and a single injection of 200 mg/kg CP on day 7. CP induced tissue injury manifested by the diffuse necrotic changes, disorganization of lining mucosa, focal hemorrhagic patches, mucosal/submucosal inflammatory cells infiltrates, and edema. CP increased malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-alpha, and interleukin 6 (IL-6), decreased IL-10, and upregulated toll-like receptor 4 (TLR-4), nuclear factor-kappa B (NF-κB) p65, Janus kinase 1 (JAK1), and signal transducer and activator of transcription 3 (STAT3) in the urinary bladder of rats. ED effectively prevented the histopathological alterations, decreased MDA, NO, and inflammatory mediators, and downregulated TLR-4, NF-κB, JAK1, and STAT3 in CP-induced rats. Treatment with ED upregulated ikβ kinase β, IL-10, nuclear factor-erythroid 2 related factor 2 (Nrf2), and cytoglobin, and boosted glutathione, superoxide dismutase, and glutathione S-transferase. Molecular docking simulations revealed the ability of ED to bind TLR-4, NF-κB, JAK1, and STAT3. In vitro, ED increased the cytotoxic activity of CP against HeLa, Caco-2, and K562 cell lines. In conclusion, ED prevented CP-induced hemorrhagic cystitis in rats by attenuating oxidative stress, suppressing TLR-4/NF-κB, and JAK1/STAT3 signaling and boosted Nrf2, cytoglobin, and antioxidants.
Keyphrases
- nuclear factor
- toll like receptor
- oxidative stress
- diabetic rats
- emergency department
- inflammatory response
- induced apoptosis
- radiation therapy
- immune response
- molecular docking
- high glucose
- nitric oxide
- signaling pathway
- dna damage
- ischemia reperfusion injury
- cell proliferation
- drug induced
- squamous cell carcinoma
- cell cycle arrest
- rheumatoid arthritis
- locally advanced
- endoplasmic reticulum stress
- radiation induced
- heat shock protein