Genetic analysis of Curcuma species from Asia based on intron regions of genes encoding diketide-CoA synthase and curcumin synthase.
Qundong LiuShu ZhuShigeki HayashiNaoko AnjikiAkihito TakanoNobuo KawaharaKatsuko KomatsuPublished in: Journal of natural medicines (2021)
Intron length polymorphism (ILP) markers in genes encoding diketide-CoA synthase (DCS) and curcumin synthase (CURS) showed high identification rates in 13 Curcuma species from Asia. However, the sequences of the intron regions have not yet been analyzed. To elucidate the sequence differences in intron regions of the DCS and CURS genes and to search for specific sequences suitable for the identification of Curcuma species, a large number of sequences were determined through subcloning coupled with sequencing analysis of six Curcuma plant specimens belonging to five species that showed distinct ILP patterns. More than 30 sequences of each region from each specimen were grouped into genes DCS1, DCS2, or CURS1-3 and subsequently the sequences of the same genes were compared. Sequences belonging to the same gene showed inter-species similarity, and thus, these intron sequences were less informative within each single-gene region. The determined sequences from each specimen showed 3-5 kinds of sequence lengths in DCS intron I region, and 5-7 kinds of sequence lengths in CURS intron region. The length of determined sequences and the fragment number in each intron region were different among species, or specimens in C. longa, which were in accordance with the fragment lengths and numbers in their corresponding ILP patterns.