Login / Signup

Fuzzy Union to Assess Climate Suitability of Annual Ryegrass (Lolium multiflorum), Alfalfa (Medicago sativa) and Sorghum (Sorghum bicolor).

Hyunae KimShin Woo HyunGerrit HoogenboomCheryl H PorterKwang Soo Kim
Published in: Scientific reports (2018)
The Law of the Minimum is often implemented using t-norm or fuzzy intersection. We propose the use of t-conorm or fuzzy union for climate suitability assessment of a grass species using annual ryegrass (Lolium multiflorum Lam.) as an example and evaluate the performance for alfalfa (Medicago sativa L.) and sorghum (Sorghum bicolor L.). The ORF and ANDF models, which are fuzzy logic systems based on t-conorm and t-norm between temperature and moisture conditions, respectively, were developed to assess the quality of climate conditions for crops. The parameter values for both models were obtained from existing knowledge, e.g., the EcoCrop database. These models were then compared with the EcoCrop model, which is based on the t-norm. The ORF model explained greater variation (54%) in the yield of annual ryegrass at 84 site-years than the ANDF model (43%) and the EcoCrop model (5%). The climate suitability index of the ORF model had the greatest likelihood of occurrence of annual ryegrass compared to the other models. The ORF model also had similar results for alfalfa and sorghum. We emphasize that the fuzzy logic system for climate suitability assessment can be developed using knowledge rather than presence-only data, which can facilitate more complex approaches such as the incorporation of biotic interaction into species distribution modeling.
Keyphrases
  • climate change
  • healthcare
  • risk assessment
  • big data