PICN Nanocomposite as Dental CAD/CAM Block Comparable to Human Tooth in Terms of Hardness and Flexural Modulus.
Yohei KawajiriHiroshi IkedaYuki NagamatsuChihiro MasakiRyuji HosokawaHiroshi ShimizuPublished in: Materials (Basel, Switzerland) (2021)
Polymer infiltrated ceramic network (PICN) composites are an increasingly popular dental restorative material that offer mechanical biocompatibility with human enamel. This study aimed to develop a novel PICN composite as a computer-aided design and computer-aided manufacturing (CAD/CAM) block for dental applications. Several PICN composites were prepared under varying conditions via the sintering of a green body prepared from a silica-containing precursor solution, followed by resin infiltration. The flexural strength of the PICN composite block (107.8-153.7 MPa) was similar to a commercial resin-based composite, while the Vickers hardness (204.8-299.2) and flexural modulus (13.0-22.2 GPa) were similar to human enamel and dentin, respectively. The shear bond strength and surface free energy of the composite were higher than those of the commercial resin composites. Scanning electron microscopy and energy dispersive X-ray spectroscopic analysis revealed that the microstructure of the composite consisted of a nanosized silica skeleton and infiltrated resin. The PICN nanocomposite block was successfully used to fabricate a dental crown and core via the CAD/CAM milling process.
Keyphrases
- endothelial cells
- electron microscopy
- reduced graphene oxide
- oral health
- induced pluripotent stem cells
- high resolution
- magnetic resonance imaging
- magnetic resonance
- molecular docking
- gold nanoparticles
- aqueous solution
- mass spectrometry
- gas chromatography mass spectrometry
- gas chromatography
- liquid chromatography