Login / Signup

From dispersal to predation: A global synthesis of ant-seed interactions.

Hannah J PennThomas O Crist
Published in: Ecology and evolution (2018)
Ant-seed interactions take several forms, including dispersal, predation, and parasitism, whereby ants consume seed appendages without dispersal of seeds. We hypothesized that these interaction outcomes could be predicted by ant and plant traits and habitat, with outcomes falling along a gradient of cost and benefit to the plant. To test this hypothesis, we conducted a global literature review and classified over 6,000 pairs of ant-seed interactions from 753 studies across six continents. Linear models showed that seed and ant size, habitat, and dispersal syndrome were the most consistent predictors. Predation was less likely than parasitism and seed dispersal among myrmecochorous plants. A classification tree of the predicted outcomes from linear models revealed that dispersal and predation formed distinct categories based on habitat, ant size, and dispersal mode, with parasitism outcomes forming a distinct subgroup of predation based on seed size and shape. Multiple correspondence analysis indicated some combinations of ant genera and plant families were strongly associated with particular outcomes, whereas other ant-seed combinations were much more variable. Taken together, these results demonstrate that ant and plant traits are important overall predictors of potential seed fates in different habitat types.
Keyphrases
  • climate change
  • type diabetes
  • genome wide
  • clinical trial
  • deep learning
  • metabolic syndrome
  • double blind
  • open label