Login / Signup

Extracellular vesicles isolated from Arabidopsis thaliana leaves reveal characteristics of mammalian exosomes.

Sharjeel JokhioIan PengChing-An Peng
Published in: Protoplasma (2024)
Plant-derived extracellular vesicles (EVs), containing a myriad of bioactive proteins, microRNAs, lipids, and secondary metabolites, have recently become the focus of rising interest due to their important roles in various applications. The widely accepted method for isolating plant EVs is differential ultracentrifugation plus density gradient centrifugation. However, the combination of differential ultracentrifugation and density gradient centrifugation for the isolation of plant EVs is time-consuming and labor-intensive. Hence, there is a need for more efficient methods to perform the separation of plant EVs. In this study, EVs were separated from Arabidopsis thaliana leaves by a cost-effective polyethylene glycol (PEG)-based precipitation approach. The mean size of purified Arabidopsis thaliana EVs determined by dynamic light scattering was 266 nm, which is consistent with nanoparticle tracking analysis. The size was also confirmed via transmission electron microscopy with morphology of a cup-shaped appearance which is the typical mammalian exosome's morphology. Additionally, Western blotting of the purified Arabidopsis thaliana EVs, using commercially available mammalian exosomal kits, displayed surface marker tetraspanin proteins (CD9, CD63, and CD81), and endosomal sorting complexes required for transport (ESCRT)-associated proteins (TSG101 and ALIX). This demonstrates that the purified Arabidopsis thaliana EVs reveal the typical proteins reported in mammalian exosomes.
Keyphrases
  • arabidopsis thaliana
  • mesenchymal stem cells
  • stem cells
  • electron microscopy
  • genome wide
  • drug delivery
  • ms ms
  • bone marrow
  • dna methylation
  • tissue engineering