Guidelines for Tuning the Excited State Hückel-Baird Hybrid Aromatic Character of Pro-Aromatic Quinoidal Compounds*.
Sílvia EscayolaClaire TonneléEduard MatitoAlbert PoaterHenrik OttossonMiquel SoláDavid CasanovaPublished in: Angewandte Chemie (International ed. in English) (2021)
Pro-aromatic molecules have higher-energy diradicaloid states that are significantly influenced by resonance structures in which conjugated rings take on Hückel-aromatic character. Recently, it has been argued that there are also pro-aromatic molecules that adopt central units with 4nπ-electron Baird-aromatic character in the T1 state, although detailed analysis suggests that these compounds are better labelled as T1 Hückel-Baird hybrid molecules where Hückel-aromaticity dominates. Herein, we consider a series of symmetrically substituted conjugated rings with potential Baird aromaticity in the lowest excited triplet and singlet states. Our computational results allow us to establish general guidelines for the rational design of molecules with excited state Hückel/Baird aromaticity in pro-aromatic quinoidal compounds. We found two main strategies to promote high Baird aromatic character: 1) anionic and small conjugated rings with electron donating groups as substituents and small exocyclic groups with electron withdrawing substituents, or 2) electron deficient conjugated rings with exocyclic electron-donor substitution.