Patterns of neuronal activation following ethanol-induced social facilitation and social inhibition in adolescent cFos-LacZ male and female rats.
Trevor T TownerDevon T ApplegateHarper J ColemanElena I VarlinskayaDavid F WernerPublished in: bioRxiv : the preprint server for biology (2024)
Motives related to the enhancement of the positive effects of alcohol on social activity within sexes are strongly associated with alcohol use disorder and are a major contributor to adolescent alcohol use and heavy drinking. This is particularly concerning given that heightened vulnerability of the developing adolescent brain. Despite this linkage, it is unknown how adolescent non-intoxicated social behavior relates to alcohol's effects on social responding, and how the social brain network differs in response within individuals that are socially facilitated or inhibited by alcohol. Sex effects for social facilitation and inhibition during adolescence are conserved in rodents in high and low drinkers, respectively. In the current study we used cFos-LacZ transgenic rats to evaluate behavior and related neural activity in male and female subjects that differed in their social facilitatory or social inhibitory response to ethanol. Subjects were assessed using social interaction on postnatal days 34, 36 and 38 after a 0, 0.5 and 0.75 g/kg ethanol challenge, respectively, with brain tissue being evaluated following the final social interaction. Subjects were binned into those that were socially facilitated or inhibited by ethanol using a tertile split within each sex. Results indicate that both males and females facilitated by ethanol display lower social activity in the absence of ethanol compared to socially inhibited subjects. Analyses of neural activity revealed that females exhibited differences in 54% of examined socially relevant brain regions of interest (ROIs) compared to only 8% in males, with neural activity in females socially inhibited by ethanol generally being lower than facilitated subjects. Analysis of socially relevant ROI neural activity to social behavior differed for select brain regions as a function of sex, with the prefrontal cortex and nucleus accumbens being negatively correlated in males, but positively correlated in females. Females displayed additional positive correlations in other ROIs, and sex differences were noted across the rostro-caudal claustrum axis. Importantly, neural activity largely did not correlate with locomotor activity. Functional network construction of social brain regions revealed further sex dissociable effects, with 90% interconnectivity in males socially inhibited by ethanol compared to 38% of facilitated subjects, whereas interconnectivity in females inhibited by ethanol was 10% compared to nearly 60% in facilitated subjects. However, hub analyses converged on similar brain regions in males and females, with the nucleus accumbens being a hub region in socially inhibited subjects, whereas the central amygdala was disconnected in facilitated subjects. Taken together, these findings support unified brain regions that contribute to social facilitation or inhibition from ethanol despite prominent sex differences in the social brain network.