Family History Extraction From Synthetic Clinical Narratives Using Natural Language Processing: Overview and Evaluation of a Challenge Data Set and Solutions for the 2019 National NLP Clinical Challenges (n2c2)/Open Health Natural Language Processing (OHNLP) Competition.
Feichen ShenSijia LiuSunyang FuYanshan WangSam HenryÖzlem UzunerHongfang LiuPublished in: JMIR medical informatics (2021)
A wide variety of methods were used by different teams in both tasks, such as Bidirectional Encoder Representations from Transformers, convolutional neural network, bidirectional long short-term memory, conditional random field, support vector machine, and rule-based strategies. System performances show that relation extraction from FH is a more challenging task when compared to entity identification task.