Blo t 2: Group 2 allergen from the dust mite Blomia tropicalis.
Kavita ReginaldSze Lei PangFook Tim ChewPublished in: Scientific reports (2019)
Blomia tropicalis has been recognized as a cause of allergic diseases in the tropical and subtropical regions. Here we report the immuno-characterization of its group 2 allergen, Blo t 2. Allergen Blo t 2 was amplified from the cDNA of B. tropicalis using degenerate primers, expressed in Escherichia coli as a recombinant protein and purified to homogeneity. The mature protein of Blo t 2 was 126 amino acids long with 52% sequence identity to Der p 2 and apparent molecular mass of 15 kDa. Circular dichroism spectroscopy showed that Blo t 2 is mainly a beta-sheeted protein. We confirmed the presence of three disulfide bonds in recombinant (r) Blo t 2 protein using electrospray mass spectrometry. Thirty-four percent of dust-mite allergic individuals from the Singapore showed specific IgE binding to rBlo t 2 as tested using immuno dot-blots. IgE-cross reactivity assays showed that Blo t 2 had between 20-50% of unique IgE-epitopes compared to Der p 2. IgE binding of native and recombinant forms of Blo t 2 were highly concordant (r2 = 0.77, p < 0.0001) to rBlo t 2. Dose-dependent in vitro histamine was observed when rBlo t 2 was incubated with whole blood of Blo t 2 sensitized individuals, demonstrating that it is a functional allergen. Nine naturally occurring isoforms of Blo t 2 were identified in this study, each having between 1-3 amino acid variations compared to the reference clone. Blo t 2 is a clinically relevant allergen of B. tropicalis as it has unique IgE epitopes compared to major group 2 allergens from Dermatophagoides spp.
Keyphrases
- amino acid
- allergic rhinitis
- mass spectrometry
- escherichia coli
- protein protein
- binding protein
- magnetic resonance imaging
- high throughput
- multidrug resistant
- ms ms
- climate change
- health risk
- transcription factor
- polycyclic aromatic hydrocarbons
- health risk assessment
- pseudomonas aeruginosa
- small molecule
- staphylococcus aureus
- capillary electrophoresis
- klebsiella pneumoniae
- energy transfer
- solid phase extraction