Login / Signup

Morphological changes of the myenteric plexus at different gut segments of human fetuses.

Subhash BhukyaSingh SSarwar SJaved Ahsan QuadriAhmed ANeerja GuptaDheeraj KDubey ATapas Chandra NagShariff A
Published in: Journal of histotechnology (2021)
The neural crest cell-derived enteric nervous system (ENS) is the intrinsic innervation of the gastrointestinal tract (GIT) which consists of neurons and enteric glia cells in the myenteric ganglia and forming plexus. The ENS consists mainly of submucosal and myenteric plexuses. It has various functions on the GIT, which include control of local blood flow, motility, mucosal transport, secretions, immune modulation as well as endocrine functions and coordinated contractile activity of smooth muscle. The knowledge on the development of the innervations at different segments of the gut in humans from 11 to 26 weeks of gestation (WG) may help in understanding the pathophysiology of various congenital diseases affecting the ENS. The aim of this study is to determine the morphology of the myenteric plexus in the esophagus, ascending colon and sigmoid colon at various weeks of gestation. Tissue samples from 10 naturally terminated fetuses aged 11-26 WG were processed for hematoxylin and eosin staining and immunohistochemistry assay. The neurons, enteric glia, the smooth muscle were visualized using PGP9.5, Vimentin and S-100 antibodies. The number of neurons and enteric glial cells appeared lowest in the esophagus than the ascending and sigmoid colon. The myenteric ganglion was closely apposed to each other, forming a continuous arch along the entire circumference of gut sections of ascending and sigmoid colon but the myenteric ganglia in the esophagus was thinly populated and widely spread in the fetus at 13 WG. As the fetal gastrointestinal tract grew in diameter and length, the myenteric ganglia became discernible.
Keyphrases