Login / Signup

Active machine learning model for the dynamic simulation and growth mechanisms of carbon on metal surface.

Di ZhangPeiyun YiXinmin LaiLinfa PengHao Li
Published in: Nature communications (2024)
Substrate-catalyzed growth offers a highly promising approach for the controlled synthesis of carbon nanostructures. However, the growth mechanisms on dynamic catalytic surfaces and the development of more general design strategies remain ongoing challenges. Here we show how an active machine-learning model effectively reveals the microscopic processes involved in substrate-catalyzed growth. Utilizing a synergistic approach of molecular dynamics and time-stamped force-biased Monte Carlo methods, augmented by the Gaussian Approximation Potential, we perform fully dynamic simulations of graphene growth on Cu(111). Our findings accurately replicate essential subprocesses-from the preferred diffusion of carbon monomer/dimer, chain or ring formations to edge-passivated Cu-aided graphene growth and bond breaks by ion impacts. Extending our simulations to carbon deposition on metal surfaces like Cu(111), Cr(110), Ti(001), and oxygen-contaminated Cu(111), our results align closely with experimental observations, providing a practical and efficient approach for designing metallic or alloy substrates to achieve desired carbon nanostructures and explore further reaction possibilities.
Keyphrases
  • molecular dynamics
  • machine learning
  • monte carlo
  • biofilm formation
  • drug delivery
  • cystic fibrosis
  • mass spectrometry
  • climate change
  • ionic liquid
  • single molecule
  • human health
  • crystal structure
  • structural basis