The multifaceted antineoplastic role of pyrimethamine against human malignancies.
Shanaya RamchandaniChakrabhavi Dhananjaya MohanJenaifer Rustom MistryQi SuIrum NazKanchugarakoppal S RangappaYeong Shik KimPublished in: IUBMB life (2022)
Cancer accounted for nearly 10 million deaths in 2020 and is the second leading cause of death worldwide. The chemotherapeutic agents that are in clinical practice possess a broad range of severe adverse effects towards vital organs which emphasizes the importance of the discovery of new therapeutic agents or repurposing of existing drugs for the treatment of human cancers. Pyrimethamine is an antiparasitic drug used for the treatment of malaria and toxoplasmosis with a well-documented excellent safety profile. In the last 5 years, numerous efforts have been made to explore the anticancer potential of pyrimethamine in in vitro and in vivo preclinical models and to repurpose it as an anticancer agent. The studies have demonstrated that pyrimethamine inhibits oncogenic proteins such as STAT3, NF-κB, DX2, MAPK, DHFR, thymidine phosphorylase, telomerase, and many more in a different types of cancer models. Moreover, pyrimethamine has been reported to work in synergy with other anticancer agents, such as temozolomide, to induce apoptosis of tumor cells. Recently, the results of phase-1/2 clinical trials demonstrated that pyrimethamine administration reduces the expression of STAT3 signature genes in tumor tissues of chronic lymphocytic leukemia patients with a good therapeutic response. In the present article, we have reviewed most of the published articles related to the antitumor effects of pyrimethamine in malignancies of breast, liver, lung, skin, ovary, prostate, pituitary, and leukemia in in vitro and in vivo settings. We have also discussed the pharmacokinetic profile and results of clinical trials obtained after pyrimethamine treatment. From these studies, we believe that pyrimethamine has the potential to be repurposed as an anticancer drug.
Keyphrases
- plasmodium falciparum
- clinical trial
- endothelial cells
- prostate cancer
- oxidative stress
- clinical practice
- gene expression
- cell proliferation
- chronic lymphocytic leukemia
- papillary thyroid
- cell death
- squamous cell carcinoma
- small molecule
- transcription factor
- systematic review
- stem cells
- early onset
- acute myeloid leukemia
- quality improvement
- endoplasmic reticulum stress
- bone marrow
- dna methylation
- immune response
- replacement therapy
- combination therapy
- benign prostatic hyperplasia
- soft tissue
- electronic health record
- cell therapy
- open label
- adverse drug
- childhood cancer