Login / Signup

Effect of Straw Return on Hydroxyl Radical Formation in Paddy Soil.

Shaochong LiuDixiang WangChangyin ZhuDongmei Zhou
Published in: Bulletin of environmental contamination and toxicology (2020)
Straw return, as an important agricultural management measure, is receiving growing attention. Hydroxyl radical (•OH) can be produced when subsurface soil interacts with oxygen, but the effects of straw incorporation on •OH formation have rarely been evaluated. In this study, we found that straw return had a significant effect on soil properties. Soil pH and redox potential (Eh) decreased while electronic conductivity (EC) showed an increment. Dissolved organic carbon content of soil initially increased and then decreased to the same level as the control by the end of the experiment of 120 days. Moreover, Fe(II) formation was promoted by straw return under anaerobic conditions. •OH was produced in the flooded paddy soil when exposed to oxygen, which correlated well with Fe(II) content. The effect of rape (Brassica campestris L.) straw on •OH formation rate was more evident as compared to wheat (Triticum aestivum L.) straw, suggesting a potentially more profound influence of rape straw return on pollutant transformation in paddy soils.
Keyphrases
  • sewage sludge
  • anaerobic digestion
  • heavy metals
  • plant growth
  • organic matter
  • intellectual disability
  • arabidopsis thaliana