Exploiting the Site Selectivity of Perfluoropyridine for Facile Access to Densified Polyarylene Networks for Carbon-Rich Materials.
Matthew B HouckLoren C BrownRobert H LambethScott T IaconoPublished in: ACS macro letters (2020)
Fluorinated molecules containing reactive functionalities are of great interest to the materials community as these compounds can be used to prepare fluorinated polymers with desirable physical and electronic properties. Despite their potential, many of these compounds are limited by their synthesis which generally requires transition-metal-catalyzed coupling reactions or harsh fluorinating conditions. Perfluoroheteroaromatic compounds provide a unique solution to this problem as compounds such as perfluoropyridine can undergo S N Ar reactions with a wide range of simple nucleophiles in a controlled and regioselective manner. Herein we report the transition-metal-free synthesis of a pool of highly soluble high aromatic content (HAC) perfluoropyridine-based thermosetting precursors and compounds of interest which can be easily obtained from readily available chemical precursors using simple nucleophilic chemistries. These thermally active monomers cure readily, in 350-400 °C temperature ranges, into highly densified polyaryelene networks and demonstrate decomposition temperatures well above 400 °C and high char yields at 900 °C, making these promising materials for high-temperature applications as well as templates for carbon-based nanomaterials.