Login / Signup

Facile Fabrication of High-Performance Si/C Anode Materials via AlCl3-Assisted Magnesiothermic Reduction of Phenyl-Rich Polyhedral Silsesquioxanes.

Xieji LinAng LiDa LiHuaihe SongXiaohong Chen
Published in: ACS applied materials & interfaces (2020)
Si/C composites, combining the advantages of both carbon materials and Si materials, have been proposed as the promising material in lithium-ion storage. However, up to now, the most common fabrication methods of Si/C composites are too complicated for practical application. Here, we first use phenyl-substituted cagelike polyhedral silsesquioxane (Tn-Ph, n = 8, 12) as both carbon and silicon precursors to prepare the high-performance Si/C anode materials via a low-temperature and simple AlCl3-assisted magnesiothermic reduction. AlCl3 plays two roles in the reduction process, on the one hand, it acts as liquid medium to promote the reduction of siloxane core in such a mild condition (200 °C), and on the other hand, it act as catalyst for phenyl groups polycondensation into carbon materials, which makes the procedure of fabrication feasible and controllable. Impressively, T12-Si/C exhibits an excellent lithium anodic performance with a reversible capacity of 1449.2 mA h g-1 with a low volume expansion of 16.3% after 100 cycles. Such superior electrochemical performance makes the Si/C composites alternative anode materials for lithium-ion batteries.
Keyphrases
  • reduced graphene oxide
  • room temperature
  • gold nanoparticles
  • ionic liquid
  • ion batteries
  • minimally invasive
  • high resolution
  • highly efficient
  • metal organic framework
  • low cost
  • molecular docking