Dirac cones and chiral selection of elastic waves in a soft strip.
Maxime LanoyFabrice LemoultAntonin EddiClaire PradaPublished in: Proceedings of the National Academy of Sciences of the United States of America (2020)
We study the propagation of in-plane elastic waves in a soft thin strip, a specific geometrical and mechanical hybrid framework which we expect to exhibit a Dirac-like cone. We separate the low frequencies guided modes (typically 100 Hz for a 1-cm-wide strip) and obtain experimentally the full dispersion diagram. Dirac cones are evidenced together with other remarkable wave phenomena such as negative wave velocity or pseudo-zero group velocity (ZGV). Our measurements are convincingly supported by a model (and numerical simulation) for both Neumann and Dirichlet boundary conditions. Finally, we perform one-way chiral selection by carefully setting the source position and polarization. Therefore, we show that soft materials support atypical wave-based phenomena, which is all of the more interesting as they make most of the biological tissues.