Tuning Lewis Acidity of Metal-Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies.
Pengfei JiTasha DrakeAkiko MurakamiPau OliveresJonathan H SkoneWenbin LinPublished in: Journal of the American Chemical Society (2018)
The Lewis acidity of metal-organic frameworks (MOFs) has attracted much research interest in recent years. We report here the development of two quantitative methods for determining the Lewis acidity of MOFs-based on electron paramagnetic resonance (EPR) spectroscopy of MOF-bound superoxide (O2•-) and fluorescence spectroscopy of MOF-bound N-methylacridone (NMA)-and a simple strategy that significantly enhances MOF Lewis acidity through ligand perfluorination. Two new perfluorinated MOFs, Zr6-fBDC and Zr6-fBPDC, where H2fBDC is 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid and H2fBPDC is 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldicarboxylic acid, were shown to be significantly more Lewis acidic than nonsubstituted UiO-66 and UiO-67 as well as the nitrated MOFs Zr6-BDC-NO2 and Zr6-BPDC-(NO2)2. Zr6-fBDC was shown to be a highly active single-site solid Lewis acid catalyst for Diels-Alder and arene C-H iodination reactions. Thus, this work establishes the important role of ligand perfluorination in enhancing MOF Lewis acidity and the potential of designing highly Lewis acidic MOFs for fine chemical synthesis.