Login / Signup

3D-printed multilayer structures for high-numerical aperture achromatic metalenses.

Cheng-Feng PanHao WangHongtao WangParvathi Nair SQifeng RuanSimon WredhYujie KeJohn You En ChanWang ZhangCheng-Wei QiuJoel K W Yang
Published in: Science advances (2023)
Flat optics consisting of nanostructures of high-refractive index materials produce lenses with thin form factors that tend to operate only at specific wavelengths. Recent attempts to achieve achromatic lenses uncover a trade-off between the numerical aperture (NA) and bandwidth, which limits performance. Here, we propose a new approach to design high-NA, broadband, and polarization-insensitive multilayer achromatic metalenses (MAMs). We combine topology optimization and full-wave simulations to inversely design MAMs and fabricate the structures in low-refractive index materials by two-photon polymerization lithography. MAMs measuring 20 μm in diameter operating in the visible range of 400 to 800 nm with 0.5 and 0.7 NA were achieved with efficiencies of up to 42%. We demonstrate broadband imaging performance of the fabricated MAM under white light and RGB narrowband illuminations. These results highlight the potential of the 3D-printed multilayer structures for realizing broadband and multifunctional meta-devices with inverse design.
Keyphrases
  • high resolution
  • high speed
  • cataract surgery
  • drug delivery
  • photodynamic therapy
  • risk assessment
  • climate change
  • mass spectrometry
  • monte carlo
  • optic nerve