Login / Signup

Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

Johan HattneNathaniel EcholsRosalie TranJan KernRichard J GildeaAaron S BrewsterRoberto Alonso MoriCarina GlöcknerJulia HellmichHartawan LaksmonoRaymond G SierraBenedikt Lassalle-KaiserAlyssa LampeGuangye HanSheraz GulDörte DiFioreDespina MilathianakiAlan R FryAlan MiahnahriWilliam E WhiteDonald W SchaferM Marvin SeibertJason E KoglinDimosthenis SokarasTsu-Chien WengJonas SellbergMatthew J LatimerPieter GlatzelPetrus H ZwartRalf W Grosse-KunstleveMichael J BoganMarc MesserschmidtGarth J WilliamsSébastien BoutetJohannes MessingerAthina ZouniJunko YanoUwe BergmannVittal K YachandraPaul D AdamsNicholas K Sauter
Published in: Nature methods (2014)
X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.
Keyphrases
  • solar cells
  • high resolution
  • high speed
  • mass spectrometry
  • oxidative stress
  • tandem mass spectrometry
  • magnetic resonance imaging
  • electron microscopy
  • computed tomography
  • radiation induced
  • image quality