A New Kind of Fireproof, Flexible, Inorganic, Nanocomposite Paper and Its Application to the Protection Layer in Flame-Retardant Fiber-Optic Cables.
Li-Ying DongYing-Jie ZhuPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2017)
An innovative method for making a new kind of highly flexible, fireproof, inorganic, nanocomposite paper made from glass fibers (GFs) coated with network-structured hydroxyapatite ultralong nanowires (NS-HANWs) is reported. The NS-HANW/GF paper is fireproof, high-temperature resistant, highly flexible, highly exquisite, and smooth, which is comparable to high-quality advanced coated paper. The most incredible characteristic of the NS-HANW/GF paper is its incombustibility. The as-prepared NS-HANW/GF paper, with the addition of optimized inorganic additives, has high mechanical properties (tensile strength ≈16 MPa) and the tensile strength is nearly 15 times that of GF paper. In addition, the NS-HANW/GF paper exhibits a high biocompatibility, owing to the coating effect of NS-HANWs on GFs. Thermal analysis indicates that the NS-HANW/GF paper has high thermal stability at high temperatures up to 1000 °C. Competitive to conventional insulation materials, the NS-HANW/GF paper exhibits a low thermal conductivity and excellent heat insulation performance. Experiments show that the NS-HANW/GF paper is promising for application in the protection layer of fire-retardant fiber-optic cable. The NS-HANW/GF paper can also be used as printing, copying, or writing paper; nonflammable China paper; fire-retardant wallpaper; specialty fireproof paper; and so on.