Login / Signup

DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography.

Mevlüt YalazSohail NoorCameron C McIntyreMarkus ButzAlfons SchnitzlerGunther DeuschlMichael Höft
Published in: Journal of neural engineering (2021)
The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner. A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation. The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11°. The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients. However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even increased accuracy.
Keyphrases