Login / Signup

Degradation of transgenic Bacillus thuringiensis proteins in corn tissue in response to post-harvest management practices.

Veronica YurchakAlan W LeslieGalen P DivelyW O LampC R R Hooks
Published in: Transgenic research (2021)
Knowledge of the persistence of Cry proteins in transgenic corn residue after harvest is necessary to assess the ecological risk to nontarget organisms. The amount of protein remaining in crop residue declines over time by a combination of microbial decomposition and leaching, both influenced by temperature, precipitation, and the amount of residue-soil contact. Here, we investigated how long biologically active Cry proteins persist in SmartStax corn residue expressing Cry1A.105, Cry1F, Cry2Ab2, Cry3Bb1, and Cry34/35Ab1, when subjected to four post-harvest practices (chisel plow tillage, flail mowing, cover crop planting, and undisturbed residue). Protein activity in residue samples collected up to 25 weeks after harvest was measured by Ostrinia nubilalis feeding bioassays and cross validated with detection frequencies determined by ELISA. All corn residue remained above ground in the flail-mowed and undisturbed treatments, while the cover crop and chisel plow treatments left 88.3 and 39.6% of the residue remaining above ground, respectively. Cry proteins retained biological activity for as long as 24 weeks after harvest when residue was left above ground with less soil contact, typical of no-till corn systems. ELISA detections were positively correlated with results of the feeding bioassays, which revealed the presence of active proteins beyond the point of ELISA detection.
Keyphrases
  • amino acid
  • healthcare
  • climate change
  • primary care
  • risk assessment
  • label free
  • high resolution
  • binding protein
  • real time pcr
  • quantum dots
  • human health
  • bacillus subtilis