Electrochemical Properties and Local Structure of the TEMPO/TEMPO + Redox Pair in Ionic Liquids.
Kateryna GolovizninaMathieu SalannePublished in: The journal of physical chemistry. B (2023)
Redox-active organic species play an important role in catalysis, energy storage, and biotechnology. One of the representatives is the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical, used as a mediator in organic synthesis and considered a safe alternative to heavy metals. In order to develop a TEMPO-based system with well-controlled electrochemical and catalytic properties, a reaction medium should be carefully chosen. Being highly conductive, stable, and low flammability fluids, ionic liquids (ILs) seem to be promising solvents with easily adjustable physical and solvation properties. In this work, we give an insight into the local structure of ILs around TEMPO and its oxidized form, TEMPO + , underlining striking differences in the solvation of these two species. The analysis is coupled with a study of thermodynamics and kinetics of oxidation in the frame of Marcus theory. Our systematic investigation includes imidazolium, pyrrolydinium, and phosphonium families combined with anions of different size, polarity, and flexibility, opting to provide a clear and comprehensive picture of the impact of the nature of IL ions on the behavior of radical/cation redox pairs. The obtained results will help to explain experimentally observed effects and to rationalize the design of TEMPO/IL systems.