Phosphorus vacancy-engineered Ce-doped CoP nanosheets for the electrocatalytic oxidation of 5-hydroxymethylfurfural.
Jiahui BiHao YingHui XuXiaoning ZhaoXinyun DuJingcheng HaoZhonghao LiPublished in: Chemical communications (Cambridge, England) (2022)
The electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furanedioic acid (FDCA) has received increasing attention. To achieve satisfactory electrooxidation of HMF, the development of an efficient electrocatalyst is particularly critical. Herein, porous Ce-CoP nanosheets integrating Ce doping and P vacancies are designed through a deep eutectic solvent approach, and they allow the excellent electrocatalytic oxidation of HMF to FDCA in 1 M KOH electrolyte with 100% HMF conversion, 98% FDCA yield, and a faradaic efficiency of 96.4% at low potential.