Login / Signup

Dual Elements Coupling Effect Induced Modification from the Surface into the Bulk Lattice for Ni-Rich Cathodes with Suppressed Capacity and Voltage Decay.

Yong MingWei XiangLang QiuWei-Bo HuaRong LiZhen-Guo WuChun-Liu XuYong-Chun LiDong WangYan-Xiao ChenBen-He ZhongFeng-Rong HeXiao-Dong Guo
Published in: ACS applied materials & interfaces (2020)
Injection of phase transition from a layered to rock-salt phase into the bulk lattice and side reactions on the interfacial usually causes structure degradation, quick capacity/voltage decay, and even thermal instability. Here, a self-formed interfacial protective layer coupled with lattice tuning was constructed for Ni-rich cathodes by simultaneous incorporation of Zr and Al in a one-step calcination. The migration energy between Zr and Al from the surface into the bulk lattice induces dual modifications from the surface into the bulk lattice, which effectively decrease the formation of cation mixing, the degree of anisotropic lattice change, and the generation of microcracks. With the stabilization role provided by the doped Zr-Al ions and protective function endowed by the surface layer, the modified cathode material exhibits significantly enhanced capacity and voltage retention. Specifically, the capacity retention for the modified cathode material reaches 99% after 100 cycles at 1 C and 25 °C in a voltage range of 3.0-4.3 V, which outperformed that for the pristine cathode (70%). The declination values of the average voltage for the modified cathode are only 0.025 and 0.097 V after 100 cycles at 1 C in voltage ranges of 3.0-4.3 and 2.8-4.5 V, respectively, which are much lower than those for the pristine cathode (0.230 and 0.405 V). The synchronous accomplishment of modification from the surface into the bulk lattice for Ni-rich materials with multiple elements in a one-step calcination process would provide some referenced value for the preparation of other cathode materials.
Keyphrases