Login / Signup

Actin polymerization controls cilia-mediated signaling.

Michael L DrummondMischa Li CovingtonEric TaraporeTuyen T L NguyenBaina J BarouniShaun CruzKevin C TanAnthony E OroScott X Atwood
Published in: The Journal of cell biology (2018)
Primary cilia are polarized organelles that allow detection of extracellular signals such as Hedgehog (Hh). How the cytoskeleton supporting the cilium generates and maintains a structure that finely tunes cellular response remains unclear. Here, we find that regulation of actin polymerization controls primary cilia and Hh signaling. Disrupting actin polymerization, or knockdown of N-WASp/Arp3, increases ciliation frequency, axoneme length, and Hh signaling. Cdc42, a potent actin regulator, recruits both atypical protein pinase C iota/lambda (aPKC) and Missing-in-Metastasis (MIM) to the basal body to maintain actin polymerization and restrict axoneme length. Transcriptome analysis implicates the Src pathway as a major aPKC effector. aPKC promotes whereas MIM antagonizes Src activity to maintain proper levels of primary cilia, actin polymerization, and Hh signaling. Hh pathway activation requires Smoothened-, Gli-, and Gli1-specific activation by aPKC. Surprisingly, longer axonemes can amplify Hh signaling, except when aPKC is disrupted, reinforcing the importance of the Cdc42-aPKC-Gli axis in actin-dependent regulation of primary cilia signaling.
Keyphrases
  • cell migration
  • transcription factor
  • tyrosine kinase
  • small molecule
  • anti inflammatory
  • quantum dots