OsbHLH073 Negatively Regulates Internode Elongation and Plant Height by Modulating GA Homeostasis in Rice.
Jinwon LeeSunok MoonSeonghoe JangSichul LeeGynheung AnKi Hong JungSoon Ki ParkPublished in: Plants (Basel, Switzerland) (2020)
Internode elongation is one of the key agronomic traits determining a plant's height and biomass. However, our understanding of the molecular mechanisms controlling internode elongation is still limited in crop plant species. Here, we report the functional identification of an atypical basic helix-loop-helix transcription factor (OsbHLH073) through gain-of-function studies using overexpression (OsbHLH073-OX) and activation tagging (osbhlh073-D) lines of rice. The expression of OsbHLH073 was significantly increased in the osbhlh073-D line. The phenotype of osbhlh073-D showed semi-dwarfism due to deficient elongation of the first internode and poor panicle exsertion. Transgenic lines overexpressing OsbHLH073 confirmed the phenotype of the osbhlh073-D line. Exogenous gibberellic acid (GA3) treatment recovered the semi-dwarf phenotype of osbhlh073-D plants at the seedling stage. In addition, quantitative expression analysis of genes involving in GA biosynthetic and signaling pathway revealed that the transcripts of rice ent-kaurene oxidases 1 and 2 (OsKO1 and OsKO2) encoding the GA biosynthetic enzyme were significantly downregulated in osbhlh073-D and OsbHLH073-OX lines. Yeast two-hybrid and localization assays showed that the OsbHLH073 protein is a nuclear localized-transcriptional activator. We report that OsbHLH073 participates in regulating plant height, internode elongation, and panicle exsertion by regulating GA biosynthesis associated with the OsKO1 and OsKO2 genes.