Login / Signup

Molecular characterization of a novel ourmia‑like virus from the phytopathogenic fungus Botryosphaeria dothidea.

Xinzheng SongJiayuan CaoShunpei XieYanfen WangXinming YinYashuang GuoChao XuLihua GuoHaiyan WuMeng Zhang
Published in: Archives of virology (2023)
Here, we describe a novel ourmia-like virus, Botryosphaeria dothidea ourmia-like virus 2 (BdOLV2), derived from the phytopathogenic fungus Botryosphaeria dothidea strain ZM180192-1 infecting maize in Henan province of China. The complete genome sequence of BdOLV2 consists of a positive-sense single-stranded RNA (+ ssRNA) segment with a length of 2,532 nucleotides (nt). The sequence contains a large open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) consisting of 605 amino acids (aa) with a molecular mass of 68.59 kDa. This RdRp protein contains eight typical conserved motifs associated with ourmia-like viruses. BLASTp analysis revealed that the RdRp protein of BdOLV2 had the highest similarity (62.10%, 58.15%, and 55.75% identity, respectively) to a virus previously identified as "Botourmiaviridae sp.", Macrophomina phaseolina ourmia-like virus 2, and Macrophomina phaseolina ourmia-like virus 2-A. Phylogenetic analysis based on the RdRp aa sequence indicated that BdOLV2 is a new member of the genus Magoulivirus in the family Botourmiaviridae.
Keyphrases
  • amino acid
  • south africa
  • minimally invasive
  • small molecule
  • working memory
  • protein protein
  • nucleic acid