Login / Signup

Crossing Classified and Corrected Fewest Switches Surface Hopping.

Jing QiuXin BaiLinjun Wang
Published in: The journal of physical chemistry letters (2018)
In the traditional fewest switches surface hopping (FSSH), trivial crossings between uncoupled or weakly coupled states have highly peaked nonadiabatic couplings and thus are difficult to deal with in the preferred, adiabatic representation. Here, we classify surface crossings into four general types and propose a parameter-free crossing corrected FSSH (CC-FSSH) algorithm, which could treat multiple trivial crossings within a time interval. As examples, Holstein Hamiltonians with different parameters are adopted to mimic electron dynamics in tens to hundreds of molecules, which suffer from severe trivial crossing problems. Using existed surface hopping approaches as references, we show that CC-FSSH exhibits significantly fast time interval convergence and weak system size dependence. In all cases, a reliable description is achieved with a large time interval of 1 fs. With a simple formalism and the ability to describe complex surface crossings, CC-FSSH could potentially simulate general nonadiabatic dynamics in nanoscale materials with a high efficiency.
Keyphrases
  • high efficiency
  • molecular dynamics
  • mental health
  • early onset
  • high resolution
  • high speed