Login / Signup

Enhancement of UV Photodetection Properties of Hierarchical Core-Shell Heterostructures of a Natural Sericin Biopolymer with the Addition of ZnO Fabricated on Ultra-Nanocrystalline Diamond Layers.

Adhimoorthy SaravananBohr-Ran HuangDeepa Kathiravan
Published in: ACS applied materials & interfaces (2020)
A novel self-assembled hierarchical heterostructure is derived from cocoon-derived sericin biopolymer (CSP) biowaste with ZnO deposited on ultra-nanocrystalline diamond (UNCD) substrates using a scalable chemical deposition technique. Then, high-performance long-life UV photodetectors are fabricated using this hybrid sericin, diamond, and ZnO (SDZ) nanostructure. The microstructural analysis reveals a several nanometer-thick CSP shell coated with a highly uniform ZnO nanorod (ZNR) array grown on the UNCD substrate. The CSP shell also contains columnar nanograins on top of the ZNR as well as vertical sidewalls with unique alignments. The hierarchical core-shell SDZ heterostructures reveal superior UV diode performance, with an ultrahigh UV switching ratio of 1.1 × 105 at 5 V, an increase of up to 49 900% greater than that of as-grown ZNRs (220). High UV responsivity is observed around 3.6 A W-1 under 365 nm UV light illumination. The perfect distribution of the sericin in the ZNRs on the UNCD substrates resulted in the ultrafast electron-hole recombination. The sericin dopants and the UNCD interlayer enabled the device to reach new energy levels in the conduction band, with the reduced barrier height allowing for improved charge carrier transportation during UV light illumination. It is believed that the sericin dopants and the UNCD layer increased the UV adsorptivity and the amount of conducting carbon dopants within the ZNRs was sufficient for s0tability. These noteworthy features make the SDZ heterostructures promising candidates for the fabrication of cost-efficient biopolymers and UNCD hybrid-based UV photodetectors.
Keyphrases
  • room temperature
  • aqueous solution
  • quantum dots
  • high resolution
  • solar cells
  • gene expression
  • dna damage
  • oxidative stress
  • genome wide
  • white matter
  • photodynamic therapy
  • single cell