Login / Signup

Global organization of neuronal activity only requires unstructured local connectivity.

David DahmenMoritz LayerLukas DeutzPaulina Anna DąbrowskaNicole VogesMichael von PapenThomas G BrochierAlexa RiehleMarkus DiesmannSonja GrünMoritz Helias
Published in: eLife (2022)
Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that are most likely not even connected. Here, we combine in vivo recordings with network models and theory to characterize the nature of mesoscopic coordination patterns in macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity supports network states with complex long-range cooperation between neurons that arises from multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial organization of covariances in resting state recordings as well as the behaviorally related modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordination to momentary demands.
Keyphrases
  • resting state
  • functional connectivity
  • spinal cord
  • single cell
  • cerebral ischemia
  • spinal cord injury
  • multiple sclerosis
  • brain injury