Login / Signup

Synergistically Boosting Thermoelectric Performance of PEDOT:PSS/SWCNT Composites via the Ion-Exchange Effect and Promoting SWCNT Dispersion by the Ionic Liquid.

Wenjiang DengLiang DengZhipeng LiYichuan ZhangGuangming Chen
Published in: ACS applied materials & interfaces (2021)
Poly(3,4 ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is perhaps the most successful polymer material for thermoelectric (TE) applications. So far, treatments by high-boiling solvents, acid or base, or mixing with the carbon nanotube (CNT) are the main ways to improve its TE performance. Herein, we report the synergistically boosting TE properties of PEDOT:PSS/single-walled CNT (SWCNT) composites by the ionic liquid (IL). The composites are prepared by physically mixing the SWCNT dispersion containing the IL with PEDOT:PSS solution and subsequent vacuum filtration. The IL additive has two major functions, that is, inducing the phase separation of PEDOT:PSS and a linear quinoid conformation of PEDOT and promoting the SWCNT dispersion. The maximum power factor at room temperature reaches 182.7 ± 9.2 μW m-1 K-2 (the corresponding electrical conductivity and Seebeck coefficient are 1602.6 ± 103.0 S cm-1 and 33.4 ± 0.4 μV K-1, respectively) for the free-standing flexible film of the PEDOT:PSS/SWCNT composites with the IL, which is much higher than those of the pristine PEDOT:PSS, the IL-free PEDOT:PSS/SWCNT, and the SWCNT films. The high TE performance of composites can be ascribed to synergistic roles of the ion-exchange effect and promotion of SWCNT dispersion by the IL. This work demonstrates the dual roles for the IL in regulating each component of the PEDOT:PSS/SWCNT composite that synergistically boosts the TE performance.
Keyphrases
  • ionic liquid
  • room temperature
  • perovskite solar cells
  • reduced graphene oxide
  • gold nanoparticles
  • molecular dynamics simulations
  • crystal structure