Effect of Dielectric Saturation on Ion Activity Coefficients in Ion Exchange Membranes.
Akhilesh PaspureddiMukul M SharmaLynn E KatzPublished in: ACS omega (2022)
Polymeric ion exchange membranes are used in water purification processes to separate ions from water. The distribution and transport of ionic species through these membranes depend on a variety of factors, including membrane charge density, morphology, chemical structure, and the specific ionic species present in the fluid. The electrical potential distribution between membranes and solutions is typically described using models based on Donnan theory. An extension of the original theory is proposed to account for the nonideal behavior of ions both in the fluid and in the membrane as well to provide a more robust description of interactions of solutes with fixed charge groups on the polymer backbone. In this study, the variation in dielectric permittivity in the membrane medium with electric field strength is taken into account in a model based on Gouy-Chapman double-layer theory to provide a more accurate description of ion activity coefficients in an ion exchange membrane. A semianalytical model is presented that accounts for the variation in dielectric permittivity of water in a charged polymer membrane. A comparison of this model with Manning's counterion condensation model clearly demonstrates that by incorporating changes in water dielectric permittivity with electric field strength, much better agreement with experiments can be obtained over a range of salt concentrations for different ions.