Kinetics and Thermodynamics of Hemicellulose Adsorption onto Nanofibril Cellulose Surfaces by QCM-D.
Mingzhu YaoChen LiangShuangquan YaoYang LiuHui ZhaoChenni QinPublished in: ACS omega (2021)
The adsorption of hemicellulose derived from bagasse onto nanofibril cellulose has been studied in terms of kinetics and thermodynamics. In situ monitoring of bagasse hemicellulose with different molecular weights onto the nanofibril cellulose surfaces has been investigated using quartz crystal microbalance and dissipation. Then, the adsorption kinetics and thermodynamic properties were analyzed. Also, the sorption behavior and the adsorption layer properties were quantified in aqueous solutions. The maximum adsorption mass was 2.8314 mg/m2 at a concentration of 200 mg/L. Also, compared with that of the low-molecular-weight hemicellulose, the adsorption capacity of the high-molecular-weight hemicellulose was higher, and the adsorption rate changed faster and could reach an equilibrium in a shorter time. The intraparticle diffusion kinetic model represented the experimental data very well. Therefore, the kinetics of hemicellulose on the fiber adsorption was commonly described by a three-stage process: mass to transfer, diffusion, and equilibrium. The Gibbs energy change of the adsorption of hemicellulose was found to range from -20.04 to -49.75 kJ/mol at 25 °C. The entropy change was >0. It was found that the adsorption was spontaneous, and the adsorbed mass increased with the increase in temperature. This strengthened the conclusion that the adsorption process of the bagasse hemicellulose on the NFC was driven by the increase in entropy caused by the release of water molecules due to hydrophobic interaction or solvent reorganization.