Flexible Free-Standing MoO3/Ti3C2T z MXene Composite Films with High Gravimetric and Volumetric Capacities.
Wei ZhengJoseph HalimAhmed El GhazalyAhmed S EtmanEric Nestor TsengPer O Å PerssonJohanna RosenMichel W BarsoumPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2020)
Enhancing both the energy storage and power capabilities of electrochemical capacitors remains a challenge. Herein, Ti3C2T z MXene is mixed with MoO3 nanobelts in various mass ratios and the mixture is used to vacuum filter binder free, open, flexible, and free-standing films. The conductive Ti3C2T z flakes bridge the nanobelts, facilitating electron transfer; the randomly oriented, and interconnected, MoO3 nanobelts, in turn, prevent the restacking of the Ti3C2T z nanosheets. Benefitting from these advantages, a MoO3/Ti3C2T z film with a 8:2 mass ratio exhibits high gravimetric/volumetric capacities with good cyclability, namely, 837 C g-1 and 1836 C cm-3 at 1 A g-1 for an ≈ 10 µm thick film; and 767 C g-1 and 1664 C cm-3 at 1 A g-1 for ≈ 50 µm thick film. To further increase the energy density, hybrid capacitors are fabricated with MoO3/Ti3C2T z films as the negative electrodes and nitrogen-doped activated carbon as the positive electrodes. This device delivers maximum gravimetric/volumetric energy densities of 31.2 Wh kg-1 and 39.2 Wh L-1, respectively. The cycling stability of 94.2% retention ratio after 10 000 continuous charge/discharge cycles is also noteworthy. The high energy density achieved in this work can pave the way for practical applications of MXene-containing materials in energy storage devices.