Login / Signup

Tailoring Low-Temperature Performance of a Lithium-Ion Battery via Rational Designing Interphase on an Anode.

Rude GuoYanxia CheGuangyuan LanJianlian LanJianhui LiLidan XingK XuWeizhen FanLe YuWeishan Li
Published in: ACS applied materials & interfaces (2019)
Performances of lithium-ion batteries at subambient temperatures are extremely restricted by the resistive interphases originated from electrolyte decomposition, especially on the anode surface. This work reports a novel strategy that an anode interphase of low impedance is constructed by applying an electrolyte additive dimethyl sulfite (DMS). Electrochemical measurements indicate that the as-constructed interphase provides graphite/LiNi0.5Co0.2Mn0.3O2 pouch cells with excellent low-temperature performance, outperforming the interphase constructed by 1,3,2-dioxathiolane 2,2-dioxide (DTD), a common commercially used electrolyte additive. Spectral characterizations in combination with theoretical calculations demonstrate that the improved performance is attributed to the unique molecular structure of DMS, which presents appropriate reduction activity and constructs the more stable and ionically conductive anode interphase due to the weaker combination of its reduction product with lithium ions than DTD. This rational design of interphases via an additive structure has been proven to be a low cost but rather an effective approach to tailor the performances of lithium-ion batteries.
Keyphrases